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Abstract

A new species of non-coding RNA, microRNAs (miRNAs) has been identified that may regulate the expression of as many as one third to
one half of all protein encoding genes. MicroRNAs are found throughout mammalian genomes, but an association between the location of these
miRNAs and regions of genomic instability (or fragile sites) in humans has been suggested [1]. In this review we discuss the possible role of altered
miRNA expression on human cancer and conduct an analysis correlating the physical location of murine miRNAs with sites of genetic alteration

in mouse models of cancer.
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1. Introduction

Regions of genomic instability can reflect alterations that
result in loss, gain, or altered gene expression depending on
the nature of the underlying genetic lesion and the function of
the gene(s) affected. A critical marker of genomic instability is
the presence of chromosomal translocations, and the analysis of
breakpoint regions surrounding such genomic rearrangements
has lead to discovery of some of the most important genes in
cell biology. For example, the original experiments of Now-
ell and Hungerford [2] connected the Philadelphia chromosome
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(Ph'), generated by a T(9:22) translocation with chronic myel-
ogenous leukemia (CML) and subsequent molecular analysis
of the breakpoints showed that this results in the formation of
the BCR-ABL fusion oncogene [3]. Similar cytogenetic studies
in Burkitt’s Lymphoma identified T(8:14) as a major chromo-
somal translocation event [4,5]. Follow up molecular studies
showed that as a result of this translocation the proto-oncogene
¢c-MYC is placed adjacent to the immunoglogulin heavy chain
gene leading to cell transformation [6]. In contrast to the pat-
tern of chromosomal translocation with oncogenes, it was the
loss of heterozygosity (LOH) at the 13q14 locus as reported by
Cavenee and colleagues in 1983 that provided the first molecu-
lar evidence of a tumor suppressor locus [7] and identification
of the retinoblastoma (RB) gene. More recently, Calin and co-
workers have reported that subsets of the newly identified species
of non-coding RNAs (ncRNAs) called microRNAs (miRNAs),
are clustered in regions of genomic instability or fragile sites
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[1,8]. With at least several hundred miRNAs found throughout
the genome and estimates that miRNAs can regulate the expres-
sion of at least 30% of protein encoding genes [9—11] not only
the location but also the function of these miRNAs could play
a significant role in the characterization of normal and tumor
cells.

2. MicroRNA biogenesis and function

MicroRNAs are first transcribed in the nucleus as pri-
mary transcripts some of which can be very large and include
polycistronic transcripts encoding multiple miRNAs. Primary
miRNA transcripts are transcribed by RNA polymerase II using
either independent promoters or, as some are found in the introns
of protein-encoded genes, they may use the promoter of the prox-
imal coding gene [12—14]. A critical feature of microRNA bio-

Primary miRNA

Intracellular
processing by
Drosha/DGCRS
complex generates a
precursor miRNA

Drosha

Precuarsor miRNA

Nuclear export of
precursor miRNA
through Exportin 5

Dicer .

Intracellular
processing by Dicer
and leading of mature
miRNA into RISC mature
miRNA
loaded

genesis is the formation of a precursor miRNA hairpin structure
of approximately 65-80 nucleotides (nts) that is processed from
the primary miRNA transcript through the action of a protein
complex containing at least two proteins, a RNase III endonu-
clease Drosha and a newly defined protein DGCR8 (Pasha)
[15-19]. Export of the precursor miRNA to the cytoplasm is
mediated by Exportin 5 [20,21] where the hairpin is processed
by a second RNase III endonuclease, Dicer, resulting in the
formation of a small double stranded RNA structure (~22 nts)
that is asymmetrically unwound based on the relative thermo-
dynamics of the two ends of the molecule [22-24]. The single
stranded mature miRNA strand is finally loaded into the multi-
protein complex termed RISC (RNA induced silencing complex)
which contains Argonaute 2 (AGO?2), a protein also critical
for small interfering RNA (siRNA) mediated RNA interference
[25,26].
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Fig. 1. A representation of the biogenesis of microRNAs and possible mechanisms by which they mediate gene silencing.
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The miRNA-loaded RISC is thought to interact with bind-
ing sites within the 3'UTR of transcripts as a result of sequence
complementarity between the first 5-7 nts of the mature miRNA
(5’-3") and the target transcript [27,28]. This so called ‘seed
sequence’ [29-31] has been used to attempt the bioinformatic
matching of miRNAs and gene targets, however, as the sequence
nucleotide constraints for other parts of the miRNA-target inter-
action are much weaker and are much less well defined this has
proven to be difficult [10,32]. The role of miRNAs in the reg-
ulation of gene expression is primarily thought to be through
repression of translation, however, there is conflicting evidence
as to whether miRNA activity is mediated through effects on
the initiation of translation and/or termination [33-35]. In addi-
tion, miRNA mediated changes in gene expression may also
involve RNA cleavage, RNA sequestration and/or degradation
of the transcript to P-bodies [36—40] (Fig. 1). Due to the limited
requirement for sequence complementarity between a miRNA
and a target transcript, any one miRNA has the potential to reg-
ulate the expression of many different genes. There is also sup-
porting evidence for the multiple binding of miRNAs (whether
the same or different) to unique sites within a single transcript
and that the cumulative effect of these binding events may be
required for maximal repression of translation [41].

Several hundred miRNAs have been identified from a wide
range of species [42,43], with conserved homology in both
sequence make-up and target recognition. The first studies exam-
ining the function of miRNAs were conducted in model organ-
isms such as Caenorhabditis elegans and Drosophila. These
studies showed the critical role that some miRNAs play in
development and differentiation, for example the first identified
miRNAs lin-4 and let-7 [44,45]. More recent studies have shown
a similar role for miRNAs in regulating genes involved in mam-
malian development and differentiation as well as hematopoiesis
and metabolism [40,46-51].

3. MicroRNAs and cancer

One of the first reports on an association between miRNAs
and human cancer involved the miRNAs hsa-miR-15a and hsa-
miR-16-1 which were found to be down regulated or deleted in
70% of tumor cells from patients with B-cell chronic lympho-
cytic leukemia (B-CLL). As these miRNAs map to a region of
minimal deletion (30 kb) that is associated with LOH (13q14) in
B-CLL, a role for these particular miRNAs in oncogenesis has
been proposed [8,52]. Interestingly, a predicted target of both
hsa-miR-15a and hsa-miR-16-1 is BCL2 [53], which is over-
expressed in B-CLL. Transgene expression of hsa-miR-15a or
hsa-miR-16 led to a decrease in the levels of BCL2 protein and
the induction of apoptosis in leukaemic cell lines, suggesting that
these miRNAs are involved in regulating BCL2 and that their loss
in B-CLL may be contributing to the ability of tumor cells to
avoid apoptosis [53]. An example of the potential for a miRNA
to drive a cancer phenotype is hsa-miR-155. Located on human
chr. 21q21 within the BIC gene, a transcribed region originally
identified as the common integration target of virally induced
chicken B cell lymphomas, hsa-miR-155 has been shown to be
altered in expression in primary Burkitt’s lymphoma, Hodgkin’s

lymphoma, B-cell lymphoma and in lung cancer [54-58]. Trans-
genic expression of hsa-miR-155 under control of the Ep-myc
enhancer generates a polyclonal expansion of pre-B cells from
leukaemic to a high-grade lymphoma in mice [59].

Studies examining the specific role for miRNAs in regulat-
ing genes that may be involved in cancer associated process
have only just begun in mammalian cells, but some initial stud-
ies suggest that hsa-miR-21 found on chr. 17 and over-expressed
in glioblastoma may have an anti-apoptotic function [60]. Also,
one of the hsa-let-7 family members that is also part of a clus-
ter on human chr. 9922, has been described as having a role
in modulating RAS expression [61] and two miRNAs found on
human chr. 13q31, hsa-miR-17-5p and hsa-miR-20a, may nega-
tively regulate E2F ] expression [62]. Tissue specific expression
of some miRNAs is well documented, and thus, in addition to
specific association between miRNAs and a cancer phenotype
resulting from genomic re-arrangement, expression profiling has
also been used to show distinctive patterns of miRNA expres-
sion that can be used to discriminate tumor and normal cells.
A variety of platforms are now available for profiling miRNA
expression and include array-based oligonucleotide [63—-65] and
bead-based technology platforms [66]. A number of broad rang-
ing studies have been conducted that show miRNA expression
profiles are potentially valuable for cancer diagnosis and prog-
nosis [66-69].

4. MicroRNA clusters in the human genome

Many clusters of miRNAs have been identified within the
human genome. Some clusters reflect the processing of a num-
ber of miRNAs from a single large polycistronic transcript such
that presumably all of the miRNAs are under the same promoter
and in the same transcriptional orientation. Other clusters of
miRNA genes may simply reflect close physical location but
independent transcriptional regulation (either same or opposite
transcriptional orientation). In terms of distance, clustering on
longer chromosomes may have greater significance than clus-
tering on shorter chromosomes and distances of less than 1 Mb
between miRNAs seem significant in view of the large sizes
of typically spliced genes. Predictions for clustering of human
miRNAs have been made in at least one study [70] using algo-
rithms with the criteria that 3000 nts is the maximal allowable
distance for clustered miRNAs between genes and any miRNAs
that fall within the same non-coding element (3’ UTR or intron)
of a gene are considered clustered. With these criteria, 22 inter-
genic clusters (17 pairs, 4 triplets, 1 group of 5) and 9 intragenic
clusters (5 pairs, 3 triplets, 1 group of 6) were identified from
a total of 76 human miRNAs considered in the study. This sug-
gests that 37.2% of miRNAs are clustered in humans assuming a
minimum of a pair to form a cluster. The largest miRNA cluster
identified to date is hsa-miR-127 (also known as hsa-miR-134)
that resides on an imprinted region of human chr. 14q32 and is
comprised of greater than 50 members [67]. The fact that they are
all apparently oriented in the same transcriptional direction and
they exhibit similar tissue specific expression suggests they are
processed from a single large primary transcript. Therefore, the
hsa-miR-127 cluster represents an extremely large polycistronic
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transcript possibly regulated by differential methylation in a
region 200 kb upstream of the miRNA cluster. This region of chr.
14q32.1 is a frequent target of translocations and inversions in T
cell leukemias, resulting in the placement of TCL1 loci in close
proximity to regulatory elements associated with T cell receptor
loci [71]. Tt is likely that the expression of one or more miRNA
from within the hsa-miR-127 cluster is significantly altered by
chromosomal translocations/inversions that take place nearby.

Another relatively well characterized polycistronic cluster
of miRNAs has been identified on a region of human chr. 13
and is frequently amplified in patients with diffuse large B
cell lymphoma, follicular lymphoma, mantle cell lymphoma
and primary cutaneous B-cell lymphoma. Although no known
protein-encoding gene has been identified in this region, a large
transcript originally designated as c13orf5 has been found that
spans this amplicon (chr 13q31). Recently it has been shown that
cl3orf15 corresponds to a polycistronic cluster of seven miR-
NAs (hsa-miR-17-5p, hsa-miR-17-3p, hsa-miR-18, hsa-miR-
19a, hsa-miR-20, hsa-miR-19b-1 and hsa-miR-92-1) termed
the hsa-miR-17-92 cluster. The expression of at least five of
these miRNAs is increased in lymphomas [72]. Construction
of a transgene containing portions of hsa-miR17-19b-1 under
the influence of an Ep-myc enhancer will rapidly induce lym-
phomas in mice, suggesting that one or more of the miRNAs
(independently or together) within this cluster are oncogenic
[72]. Two miRNAs within this cluster, hsa-miR17-5p and hsa-
miR-20a have been shown to bind to, and translationally down-
regulate E2F] that is thought to regulate the MYC oncogene
through a feedback mechanism [62].

To investigate the possible involvement of miRNAs in de-
regulating key genes involved in cancer, Croce and colleagues
compared the chromosomal localization of 186 miRNAs to
human fragile sites and genomically unstable regions [1]. The
genomically unstable regions were identified from a literature
search using amplification (37 examples), deletion (154 exam-
ples) or translocation (45 examples) as key phrases. From these
databases, a random effect Poisson regression model defined the
number of miRNAs per 1 Mb as a defined exposure length. From
this analysis, they were able to associate 48.3% (90/186) of the
miRNAs studied with 36 clusters (of 2-3 miRNAs per cluster).
They also found 35 of 186 miRNAs (19%) within or near frag-
ile sites, a rate essentially nine times higher than that found at
non-fragile sites. Approximately, 52.5% (98/186) of the miR-
NAs are found at or near regions of cancer associated genomic
regions. This percentage reflects the miRNAs that were previ-
ously discovered as a result of cloning or electronic searches. For
example, on chr. 7q32, the hsa-miR-29a cluster is within 1 Mb
of a region of minimal deletion in prostate cancer and on chr.
19p13, LOH is associated with lung, pancreatic and gynecologi-
cal cancer. Close to this region of 19p13 (0.5-4.0 Mb) is the large
hsa-miR-7-3 cluster, which is composed of 47 members. The chr.
X(qg25 region is associated with LOH in advanced ovarian can-
cer and closely aligned with this region is the hsa-miR-19b-2
cluster. On chr. 9922, a cluster of 6 miRNAs including hsa-
let-7a-1 are found within a 1.46 Mb region that overlaps with
a region of deletion found in urothelial cancer and is close to
the Patched homolog (PTCH) and Fanconi’s anemia comple-

mentation group C (FANCC) loci. A minimal LOH region of
17p13 (close to TP53) in both hepatocellular carcinoma and
lung cancer is found near (1.9 Mb) the hsa-miR-22 cluster. Also
in lung cancer, a region of homozygous deletion on chr. 21q11 is
closely (2.8 Mb) aligned with a cluster that includes hsa-let-7c.
Finally, the 13q32 region that harbors the hsa-miR-17-92 cluster,
also exhibits LOH in Follicular lymphoma and B-CLL. In addi-
tion to deletion and amplification, a number of chromosomal
breakpoints are found in close proximity to miRNAs includ-
ing hsa-miR-142 which is 50 bp from the T(8:17) translocation
in a leukemia and hsa-miR-180 which is 1kb from a T(4:22)
breakpoint and the MNI gene in meningioma. The hsa-miR-34a
cluster is also very closely aligned with the breakpoint for the
T(3:11) associated with B Cell leukemia. Not to diminish the
importance of each miRNA, there are many additional instances
of very close alignment (<1 Mb) of single miRNAs with chro-
mosomal deletion, amplification and translocation events [1].

5. Mouse miRNAs and genomic location

The relationship between the location of miRNAs at or near
sites of genomic instability has been examined mainly using
human data, however, mouse models of cancer are an abundant
source of chromosomal breakpoint information primarily from
the use of murine retroviruses (e.g. Moloney Murine leukemia
virus, Mo-MuLV) and the diseases caused by integration of
these constructs. We thus compared the position of the anno-
tated mouse miRNAs reported within the Sanger miRNA reg-
istry (http://microrna.sanger.ac.uk/) with genomically unstable
regions or fragile sites, in particular retroviral integration sites
found in the Mouse Retrovirus Tagged Cancer Gene Database
(http://rtcgd.nciferf.gov); this database contains primarily infor-
mation from the laboratories of Copeland and Jenkins (NCI),
Berns (Netherlands Cancer Inst.) and Lenz (Albert Einstein Col-
lege of Med) Release RTCGD mm?7 dated 6/1/2006 [73]. The
locations of the mouse miRNAs and sites of instability were posi-
tioned according to the UCSC Genome bioinformatics website
(http://genome.ucsc.edu). We positioned 340 miRNAs from the
current Sanger miRNA Registry release (Release 8.1) with the
stringent criteria that a cluster should consist of more than two
members positioned within 1 Mb (Fig. 2). Among 22 clusters
of miRNAs identified by this approach, the largest included the
mmu-miR-127 cluster with greater than 50 members on mouse
chr. 12. Other significant clusters include the mmu-miR-29a
cluster on chr. 6, the mmu-miR-23a cluster on chr. 8, the mmu-
miR-17 cluster on chr. 14 and the mmu-miR-19b cluster on chr.
X. If we relax the stringency to define a cluster as two or more
members, we find an increase in clusters of miRNAs to 161/340
(47%) of the all the miRNAs with 51 clusters. Using the same
criteria to identify clusters of retroviral integration sites as we
originally used (3 or more hits within a 1 Mb region) for the
miRNA cluster analysis, we find 18 clusters of retroviral inte-
gration (Fig. 2).

Overlaying retroviral integration sites with miRNA positions
with the criteria that proximity should be within 1 Mb, we were
then able to identify a number of cases were miRNAs reside
close to integration sites (Table 1). For example, mmu-miR-9-1
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Fig. 2. Alignment of mouse microRNAs and gene markers associated with retroviral integration sites in mouse models of cancer. Gene names are shown on the left
of each chromosome and the microRNAs on the right are marked by their approximate position in mega-bases (Mb). Clusters of genes associated with retroviral
integration sites and clusters of miRNAs are shown within shaded boxes.
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miR-367 127383571 mm Chr. 10 Prglip 77261529
3.3Mb Pdxk 78136122
Lef1 130773531 Prtbpl 79634267
mm Chr. 4 Jakl 100671077 Cirbp 79931154
52kb Tcfe2a 80224065
miR-101a 100723384 Sppl2b 80647250
160 kb Scamp4 80390922
Dnajc6 100883753 Nfic 81200522
Zdhhcl8 133049018 Edg6 81293157
Aridla 133134330 miR-26-a2 126493008
Rps6kal 133190996 miR-546 126495918
Clic4 134584521 135kb
Runx3 134558250 Dix3 126631155
236 kb Mars 126812486
miR-700 134794992 mm Chr. 11 Smg6 75153770
456 kb 101 kb
Cnr2 135251385 miR212 75254962
mm Chr. 5 Dix2 134929336 miR-22 75545290
417kb miR-132 75255256
miR-721 135346996 816bp
Curll 135597145 Dphl 75256072
365kb Pps 75735230
miR-702 135962343 miR-423 77159639
miR-25 137110842 miR-144 78154580
miR-93 137111044 miR-451 78154745
miR-106b 137111258 1.4Mb
miR-339 138341760 Nfl 79616690
405 kb 176 kb
Mafk 138747493 miR-193 79793544
Lfng 139581391 i
Evi29 139673271 miR-21 635 Kb 86653975
Gnal2 139741986 .
mm Chr. 6 miR-182 30098064 miR-301 8.6k 87182912
miR-96 30101592 Bzrapl 87818078
miR-183 30101814 .
. miR-142 87826772
miR-335 30673445
miR-29 30992959 mm Chr. 12 Tcll Lsub 105613300

miR-29b-1 30993322
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Table 1 (Continued )

Chromosme Integration or miRNA Interval Location
miR-127 107112874
miR-134 107254159
miR-136 107115355
miR-154 107258453
and many others
miR-203 109655825
542kb
AKT-1 110198167
Crip2 110677230
Ighg 110764249
mm Chr. 13 Fancc 61116288
6.4kb
miR-23b 61122749
miR-27b 61122977
miR-24-1 61123473
mm Chr. 14 Gpc5 109439038
10.1kb
miR-17 109449155
miR-18 109449335
miR-19a 109449484
miR-20a 109449641
Mmpl4 49292580
190kb
miR-686 49483117
miR-208 49815646
mm Chr. 15 Rarg 102221839
737kb
miR-196a2 102959506
miR-148b 103273790
230kb
Ppplrla 103503968

is found just 4.4 kb proximal of Rhbg; retroviral integration into
the 3’ region of the Rhbg gene on mouse chr. 3 is associated
with brain tumors in mice [74]. About 52 kb distal to Jakl on
chr. 4 is mmu-miR-101a; integration into the 5 UTR region of
Jakl results in myeloid tumors [75,76]. On mouse chr. 6, mmu-
miR-29a and mmu-miR-29b-1 reside only 18.6 kb proximal to
the Btl6 integration site in an inverted in orientation. Marked
by a gene of unknown function, Mo-MuLV integrations on the
3’ side of Bt16 generate lymphomas [77] or brain tumors [74]
depending on the mouse model. On the distal end of chr. 6 is
another cluster of integration sites, one of which is close to Ptpn6
located 13.1 kb distal to the mmu-miR-141 locus. Disruption of
the coding region of the 5’ region of Pipn6 results in either B
cell tumors [76] or histiosarcomas [77].

Starting at 816 bp distal to mmu-miR-132 on mouse chr. 11
reside the genes Dphl, Cis8, and Pps. Integration into a region
spanning 4-23 kb 5" of Dphl, which would be predicted to inter-
rupt mmu-miR-132 results in T cell lymphomas [77,78]. Located
alittle further distal on chr. 11 and located 176 kb downstream of
NfI (neurofibromatosis 1) is mmu-miR-193 which can be found
in a cluster with four other miRNAs. Retroviral integration into
NfI principally results in myeloid tumors [75,76,79,80]. The
mmu-miRNA-142 is also found further distal on chr. 11 and is
located 8.6 kb on the 3’ UTR region (between 4 and 28.9 kb) of
Bzrapl. Interruption of this region results in a series of T cell

[78], myeloid [76] or and B cell tumors [81] depending on the
model used.

On chr. 13, interruption of the Fancc gene in the 3’ region or in
intron 15 results in brain tumors [74]. A small cluster of miRNAs
including the mmu-miR-23b is located 6.4 kb distal to the Fancc
gene and therefore, is likely to be disrupted by these retroviral
integration events. Two members of the Glypican family, Gpc3
(on chr. X) and Gpc5 (on chr. 14) are found in close proximity to
miRNA clusters. Gpc) is located 10.1 kb proximal to the mmu-
miR-17 cluster; disruption in the 5’ region of Gpc5 results in
T cell lymphomas [78,82]. Integration into a region 5" of Gpc3
also generates T cell lymphomas [78,82]. The mmu-miR-19b-2
cluster resides between 1.7kb and 2.2kb 5’ of Gpc3. There are
also situations where a retroviral integration site is located very
close to a single miRNA. Examples of this are the integration
site near Nfkb2 that is only 33 kb from mmu-miR-146 on chr. 19
and mmu-miR-375, found 84 kb distal to the Wnt6 integration
site on mouse chr. 1.

6. Conclusion

In this analysis, we have focused on clusters of mouse
miRNAs found in close proximity to known sites of retroviral
integration and/or genomic instability assuming such clusters
may exhibit altered expression as a consequence of genomic
rearrangement. Given the potential for individual miRNAs to
regulate multiple gene targets, a change in the expression of a sin-
gle miRNA, let alone the aberrant expression of a miRNA clus-
ter, could have significant consequences. Moreover, although
not discussed in detail here, the conservation of miRNA posi-
tions relative to certain genes of interest (e.g. FANCC) exhibits
good correlation between species (mouse to human) suggesting
conserved co-regulatory processes. As such, the study of murine
miRNAs in proximity to regions of known genomic instability
in highly tractable mouse models of cancer should reveal critical
roles for these miRNAs in a variety of cancer-related processes
with many findings potentially relevant to human disease.
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